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Abstract: In this paper, we obtain the exact solutions of two fractional power series. A new multiplication of fractional 
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fact, our results are generalizations of ordinary calculus results. 
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I.   INTRODUCTION 

During the 18th and 19th centuries, there were many famous scientists such as Euler, Laplace, Fourier, Abel, Liouville, 

Grunwald, Letnikov, Riemann, and some others who reported interesting results within fractional calculus. In recent years, 

fractional calculus has become an increasingly popular research area due to its effective applications in different scientific 

fields such as economics, engineering, dynamics, biology, control theory, mechanics, chaos theory, and so on [1-10]. 

However, the definition of fractional derivative is not unique. Common definitions include Riemann-Liouville (R-L) 

fractional derivative, Caputo fractional derivative, Grunwald-Letnikov (G-L) fractional derivative, and Jumarie’s modified 

R-L fractional derivative [11-14]. Because Jumarie’s modified R-L fractional derivative helps avoid non-zero fractional 

derivative of constant functions, it is easier to use this definition to associate fractional calculus with classical calculus. 

In this paper, we find the exact solutions of the following two 𝛼-fractional power series: 

                                                                                      ∑
(4𝑛)!

Γ((4𝑛+1)𝛼+1)
𝑥(4𝑛+1)𝛼∞

𝑛=1  ,                                                               (1) 

and 

                                                                                          ∑
1

Γ(4𝑛𝛼+1)
𝑥4𝑛𝛼∞

𝑛=0  .                                                                        (2) 

where 0 < 𝛼 ≤ 1. Jumarie type of R-L fractional calculus and a new multiplication of fractional power series play important 

roles in this paper. And our results are generalizations of the results in classical calculus. 

II.   PRELIMINARIES 

At first, we introduce the fractional derivative used in this paper and its properties. 

Definition 2.1 ([15]): Let 0 < 𝛼 ≤ 1, and 𝑥0 be a real number. The Jumarie type of Riemann-Liouville (R-L) 𝛼-fractional 

derivative is defined by 

                                                                        ( 𝐷𝑥0 𝑥
𝛼)[𝑓(𝑥)] =

1

Γ(1−𝛼)

𝑑

𝑑𝑥
∫

𝑓(𝑡)−𝑓(𝑥0)

(𝑥−𝑡)𝛼 𝑑𝑡
𝑥

𝑥0
 .                                                   (3) 

And the Jumarie type of Riemann-Liouville 𝛼-fractional integral is defined by 

                                                                           ( 𝐼𝑥0 𝑥
𝛼)[𝑓(𝑥)] =

1

Γ(𝛼)
∫

𝑓(𝑡)

(𝑥−𝑡)1−𝛼 𝑑𝑡
𝑥

𝑥0
 ,                                                           (4) 
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where Γ( )  is the gamma function. On the other hand, for any positive integer 𝑝 , we define ( 𝐷𝑥0 𝑥
𝛼)

𝑝
[𝑓(𝑥)] =

( 𝐷𝑥0 𝑥
𝛼)( 𝐷𝑥0 𝑥

𝛼) ∙∙∙ ( 𝐷𝑥0 𝑥
𝛼)[𝑓(𝑥)], the 𝑝-th order 𝛼-fractional derivative of 𝑓(𝑥). 

Proposition 2.2 ([16]):  If  𝛼, 𝛽, 𝑥0, 𝐶  are real numbers and 𝛽 ≥ 𝛼 > 0, then 

                                                                                   ( 𝐷0 𝑥
𝛼)[𝑥𝛽] =

Γ(𝛽+1)

Γ(𝛽−𝛼+1)
𝑥𝛽−𝛼,                                                              (5) 

and 

                                                                                               ( 𝐷0 𝑥
𝛼)[𝐶] = 0.                                                                         (6) 

Next, we introduce the definition of fractional power series. 

Definition 2.3: Suppose that 𝑥 and 𝑎𝑛  are real numbers for all 𝑛, and 0 < 𝛼 ≤ 1. If the function 𝑓𝛼: [𝑎, 𝑏] → 𝑅 can be 

expressed as 𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑛

Γ(𝑛𝛼+1)
𝑥𝑛𝛼∞

𝑛=0 , then we say that 𝑓𝛼(𝑥𝛼) is a 𝛼-fractional power series. 

In the following, a new multiplication of fractional power series is introduced. 

Definition 2.4 ([17]): If 0 < 𝛼 ≤ 1. If 𝑓𝛼(𝑥𝛼) and 𝑔𝛼(𝑥𝛼) are two 𝛼-fractional power series, 

                                                              𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑛

Γ(𝑛𝛼+1)
𝑥𝑛𝛼∞

𝑛=0  = ∑
𝑎𝑛

𝑛!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝑛
∞
𝑛=0 ,                                          (7) 

                                                             𝑔𝛼(𝑥𝛼) = ∑
𝑏𝑛

Γ(𝑛𝛼+1)
𝑥𝑛𝛼 = ∑

𝑏𝑛

𝑛!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝑛

.∞
𝑛=0

∞
𝑛=0                                           (8) 

Then we define 

                                                                         𝑓𝛼(𝑥𝛼) ⊗ 𝑔𝛼(𝑥𝛼)  

                                                                   = ∑
𝑎𝑛

Γ(𝑛𝛼+1)
𝑥𝑛𝛼∞

𝑛=0 ⊗ ∑
𝑏𝑛

Γ(𝑛𝛼+1)
𝑥𝑛𝛼∞

𝑛=0   

                                                                   = ∑
1

Γ(𝑛𝛼+1)
(∑ (

𝑛
𝑚

) 𝑎𝑛−𝑚𝑏𝑚
𝑛
𝑚=0 )∞

𝑛=0 𝑥𝑛𝛼 .                                                        (9) 

Equivalently, 

                                                           𝑓𝛼(𝑥𝛼) ⊗ 𝑔𝛼(𝑥𝛼) 

                                                      = ∑
𝑎𝑛

𝑛!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝑛
∞
𝑛=0 ⊗ ∑

𝑏𝑛

𝑛!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝑛
∞
𝑛=0   

                                                     = ∑
1

𝑛!
(∑ (

𝑛
𝑚

) 𝑎𝑛−𝑚𝑏𝑚
𝑛
𝑚=0 )∞

𝑛=0 (
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝑛

 .                                                           (10) 

Definition 2.5 ([18]): Assume that 0 < 𝛼 ≤ 1, and 𝑓𝛼(𝑥𝛼),  𝑔𝛼(𝑥𝛼) are 𝛼-fractional power series, 

                                                         𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑛

Γ(𝑛𝛼+1)
𝑥𝑛𝛼 = ∑

𝑎𝑛

𝑛!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝑛
∞
𝑛=0

∞
𝑛=0  ,                                              (11) 

                                                        𝑔𝛼(𝑥𝛼) = ∑
𝑏𝑛

Γ(𝑛𝛼+1)
𝑥𝑛𝛼 = ∑

𝑏𝑛

𝑛!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝑛

.∞
𝑛=0

∞
𝑛=0                                                (12) 

The compositions of 𝑓𝛼(𝑥𝛼) and 𝑔𝛼(𝑥𝛼) are defined by 

                                                        (𝑓𝛼 ∘ 𝑔𝛼)(𝑥𝛼) = 𝑓𝛼(𝑔𝛼(𝑥𝛼)) = ∑
𝑎𝑛

𝑛!
(𝑔𝛼(𝑥𝛼))

⨂𝑛∞
𝑛=0 ,                                               (13) 

and 

                                                        (𝑔𝛼 ∘ 𝑓𝛼)(𝑥𝛼) = 𝑔𝛼(𝑓𝛼(𝑥𝛼)) = ∑
𝑏𝑛

𝑛!
(𝑓𝛼(𝑥𝛼))

⨂𝑛∞
𝑛=0 .                                                (14) 

Definition 2.6 ([19]): If 0 < α ≤ 1, and 𝑥 is a real number. The 𝛼-fractional exponential function is defined by 

                                                                𝐸𝛼(𝑥𝛼) = ∑
𝑥𝑛𝛼

Γ(𝑛𝛼+1)
= ∑

1

𝑛!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝑛

.∞
𝑛=0

∞
𝑛=0                                                (15) 

And the 𝛼-fractional logarithmic function 𝐿𝑛𝛼(𝑥𝛼) is the inverse function of 𝐸𝛼(𝑥𝛼). 
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Definition 2.7 ([20]): The 𝛼-fractional cosine and sine function are defined respectively as follows: 

                                                       𝑐𝑜𝑠𝛼(𝑥𝛼) = ∑
(−1)𝑛

Γ(2𝑛𝛼+1)
𝑥2𝑛𝛼 = ∑

(−1)𝑛

(2𝑛)!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂2𝑛
∞
𝑛=0

∞
𝑛=0 ,                                  (16) 

and 

                                          𝑠𝑖𝑛𝛼(𝑥𝛼) = ∑
(−1)𝑛

Γ((2𝑛+1)𝛼+1)

∞
𝑛=0 𝑥(2𝑛+1)𝛼 = ∑

(−1)𝑛

(2𝑛+1)!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂(2𝑛+1)
∞
𝑛=0 .                      (17) 

III.   EXAMPLES 

In this section, we find the exact solutions of two fractional power series. 

Example 3.1: Suppose that 0 < 𝛼 ≤ 1. Find the 𝛼-fractional power series 

                                                                                    ∑
(4𝑛)!

Γ((4𝑛+1)𝛼+1)
𝑥(4𝑛+1)𝛼∞

𝑛=1  ,                                                           (18) 

where −1 <
1

Γ(𝛼+1)
𝑥𝛼 < 1, and (

1

Γ(𝛼+1)
𝑥𝛼)

⨂4

< 1. 

Solution                        ∑
(4𝑛)!

Γ((4𝑛+1)𝛼+1)
𝑥(4𝑛+1)𝛼∞

𝑛=1   

                                    = ∑
1

4𝑛+1

∞
𝑛=1 (

1

Γ(𝛼+1)
𝑥𝛼)

⨂(4𝑛+1)

  

                                    = ∑ ( 𝐼0 𝑥
𝛼) [(

1

Γ(𝛼+1)
𝑥𝛼)

⨂4𝑛

]∞
𝑛=1   

                                    = ( 𝐼0 𝑥
𝛼) [∑ (

1

Γ(𝛼+1)
𝑥𝛼)

⨂4𝑛
∞
𝑛=1 ]  

                                    = ( 𝐼0 𝑥
𝛼) [(

1

Γ(𝛼+1)
𝑥𝛼)

⨂4

⊗ ∑ (
1

Γ(𝛼+1)
𝑥𝛼)

⨂4𝑛
∞
𝑛=0 ]  

                                    = ( 𝐼0 𝑥
𝛼) [(

1

Γ(𝛼+1)
𝑥𝛼)

⨂4

⊗ [1 − (
1

Γ(𝛼+1)
𝑥𝛼)

⨂ 4

]
⨂ −1

]  

                                    = ( 𝐼0 𝑥
𝛼) [−1 + [1 − (

1

Γ(𝛼+1)
𝑥𝛼)

⨂ 4

]
⨂ −1

]  

                                    = ( 𝐼0 𝑥
𝛼) [−1 +

1

2
[1 + (

1

Γ(𝛼+1)
𝑥𝛼)

⨂ 2

]
⨂ −1

+
1

2
[1 − (

1

Γ(𝛼+1)
𝑥𝛼)

⨂ 2

]
⨂ −1

]  

                                    =
1

2
( 𝐼0 𝑥

𝛼) [[1 − (
1

Γ(𝛼+1)
𝑥𝛼)

⨂ 2

]
⨂ −1

] +
1

2
( 𝐼0 𝑥

𝛼) [[1 + (
1

Γ(𝛼+1)
𝑥𝛼)

⨂ 2

]
⨂ −1

] − ( 𝐼0 𝑥
𝛼)[1]  

                                    =
1

4
𝐿𝑛𝛼 ((1 +

1

Γ(𝛼+1)
𝑥𝛼) ⊗ (1 −

1

Γ(𝛼+1)
𝑥𝛼)

⨂ −1

) +
1

2
𝑎𝑟𝑐𝑡𝑎𝑛𝛼(𝑥𝛼) −

1

Γ(𝛼+1)
𝑥𝛼 .                 (19) 

Example 3.2: Let 0 < 𝛼 ≤ 1. Find the 𝛼-fractional power series 

                                                                                           ∑
1

Γ(4𝑛𝛼+1)
𝑥4𝑛𝛼∞

𝑛=0  .                                                                    (20) 

Solution  Let 𝑦𝛼(𝑥𝛼) = ∑
1

Γ(4𝑛𝛼+1)
𝑥4𝑛𝛼∞

𝑛=0 , then the 𝛼-fractional derivatives of 𝑦𝛼(𝑥𝛼) 

                                                                ( 𝐷0 𝑥
𝛼)[𝑦𝛼(𝑥𝛼)] = ∑

1

Γ((4𝑛−1)𝛼+1)
𝑥(4𝑛−1)𝛼∞

𝑛=1  ,                                                (21) 

                                                               ( 𝐷0 𝑥
𝛼)

2
[𝑦𝛼(𝑥𝛼)] = ∑

1

Γ((4𝑛−2)𝛼+1)
𝑥(4𝑛−2)𝛼∞

𝑛=1  ,                                              (22) 

                                                               ( 𝐷0 𝑥
𝛼)

3
[𝑦𝛼(𝑥𝛼)] = ∑

1

Γ((4𝑛−3)𝛼+1)
𝑥(4𝑛−3)𝛼∞

𝑛=1  ,                                              (23) 
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                                         ( 𝐷0 𝑥
𝛼)

4
[𝑦𝛼(𝑥𝛼)] = ∑

1

Γ((4𝑛−4)𝛼+1)
𝑥(4𝑛−4)𝛼∞

𝑛=1 = ∑
1

Γ(4𝑛𝛼+1)
𝑥4𝑛𝛼∞

𝑛=0  .                             (24) 

Therefore, 

                                                                           ( 𝐷0 𝑥
𝛼)

4
[𝑦𝛼(𝑥𝛼)] − 𝑦𝛼(𝑥𝛼) = 0,                                                            (25) 

 and                             

                               𝑦𝛼(0) = 1, ( 𝐷0 𝑥
𝛼)[𝑦𝛼(𝑥𝛼)](0) = ( 𝐷0 𝑥

𝛼)
2

[𝑦𝛼(𝑥𝛼)](0) = ( 𝐷0 𝑥
𝛼)

3
[𝑦𝛼(𝑥𝛼)](0) = 0.               (26) 

This is a 4-th order linear 𝛼-fractional differential equation, and we can obtain the general solution is 

                                             𝑦𝛼(𝑥𝛼) = 𝐶1𝐸𝛼(𝑥𝛼) + 𝐶2𝐸𝛼(−𝑥𝛼) + 𝐶3𝑐𝑜𝑠𝛼(𝑥𝛼) + 𝐶4𝑠𝑖𝑛𝛼(𝑥𝛼),                                (27) 

where 𝐶1, 𝐶2, 𝐶3, 𝐶4 are constants. Using initial value conditions yields 

                                                                                 𝐶1= 𝐶2 =
1

4
, 𝐶3 =

1

2
, and 𝐶4 = 0.                                                       (28) 

Thus, 

                                                                      𝑦𝛼(𝑥𝛼) =
1

4
𝐸𝛼(𝑥𝛼) +

1

4
𝐸𝛼(−𝑥𝛼) +

1

2
𝑐𝑜𝑠𝛼(𝑥𝛼).                                       (29) 

That is, 

                                                           ∑
1

Γ(4𝑛𝛼+1)
𝑥4𝑛𝛼∞

𝑛=0 =
1

4
𝐸𝛼(𝑥𝛼) +

1

4
𝐸𝛼(−𝑥𝛼) +

1

2
𝑐𝑜𝑠𝛼(𝑥𝛼).                              (30) 

 

IV.   CONCLUSION 

In this paper, we find the exact solutions of two fractional power series. Jumarie’s modified R-L fractional calculus and a 

new multiplication of fractional power series play important roles in this article. In fact, our results are generalizations of 

the results in traditional calculus. In the future, we will expand our research fields to engineering mathematics and fractional 

differential equations. 
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